(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

mul0(C(x, y), y') → add0(mul0(y, y'), y')
mul0(Z, y) → Z
add0(C(x, y), y') → add0(y, C(S, y'))
add0(Z, y) → y
second(C(x, y)) → y
isZero(C(x, y)) → False
isZero(Z) → True
goal(xs, ys) → mul0(xs, ys)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

mul0(C(x, y), y') → add0(mul0(y, y'), y')
mul0(Z, y) → Z
add0(C(x, y), y') → add0(y, C(S, y'))
add0(Z, y) → y
second(C(x, y)) → y
isZero(C(x, y)) → False
isZero(Z) → True
goal(xs, ys) → mul0(xs, ys)

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
mul0(C(x, y), y') → add0(mul0(y, y'), y')
mul0(Z, y) → Z
add0(C(x, y), y') → add0(y, C(S, y'))
add0(Z, y) → y
second(C(x, y)) → y
isZero(C(x, y)) → False
isZero(Z) → True
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: C:Z → C:Z → C:Z
C :: S → C:Z → C:Z
add0 :: C:Z → C:Z → C:Z
Z :: C:Z
S :: S
second :: C:Z → C:Z
isZero :: C:Z → False:True
False :: False:True
True :: False:True
goal :: C:Z → C:Z → C:Z
hole_C:Z1_1 :: C:Z
hole_S2_1 :: S
hole_False:True3_1 :: False:True
gen_C:Z4_1 :: Nat → C:Z

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
mul0, add0

They will be analysed ascendingly in the following order:
add0 < mul0

(6) Obligation:

Innermost TRS:
Rules:
mul0(C(x, y), y') → add0(mul0(y, y'), y')
mul0(Z, y) → Z
add0(C(x, y), y') → add0(y, C(S, y'))
add0(Z, y) → y
second(C(x, y)) → y
isZero(C(x, y)) → False
isZero(Z) → True
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: C:Z → C:Z → C:Z
C :: S → C:Z → C:Z
add0 :: C:Z → C:Z → C:Z
Z :: C:Z
S :: S
second :: C:Z → C:Z
isZero :: C:Z → False:True
False :: False:True
True :: False:True
goal :: C:Z → C:Z → C:Z
hole_C:Z1_1 :: C:Z
hole_S2_1 :: S
hole_False:True3_1 :: False:True
gen_C:Z4_1 :: Nat → C:Z

Generator Equations:
gen_C:Z4_1(0) ⇔ Z
gen_C:Z4_1(+(x, 1)) ⇔ C(S, gen_C:Z4_1(x))

The following defined symbols remain to be analysed:
add0, mul0

They will be analysed ascendingly in the following order:
add0 < mul0

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
add0(gen_C:Z4_1(n6_1), gen_C:Z4_1(b)) → gen_C:Z4_1(+(n6_1, b)), rt ∈ Ω(1 + n61)

Induction Base:
add0(gen_C:Z4_1(0), gen_C:Z4_1(b)) →RΩ(1)
gen_C:Z4_1(b)

Induction Step:
add0(gen_C:Z4_1(+(n6_1, 1)), gen_C:Z4_1(b)) →RΩ(1)
add0(gen_C:Z4_1(n6_1), C(S, gen_C:Z4_1(b))) →IH
gen_C:Z4_1(+(+(b, 1), c7_1))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
mul0(C(x, y), y') → add0(mul0(y, y'), y')
mul0(Z, y) → Z
add0(C(x, y), y') → add0(y, C(S, y'))
add0(Z, y) → y
second(C(x, y)) → y
isZero(C(x, y)) → False
isZero(Z) → True
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: C:Z → C:Z → C:Z
C :: S → C:Z → C:Z
add0 :: C:Z → C:Z → C:Z
Z :: C:Z
S :: S
second :: C:Z → C:Z
isZero :: C:Z → False:True
False :: False:True
True :: False:True
goal :: C:Z → C:Z → C:Z
hole_C:Z1_1 :: C:Z
hole_S2_1 :: S
hole_False:True3_1 :: False:True
gen_C:Z4_1 :: Nat → C:Z

Lemmas:
add0(gen_C:Z4_1(n6_1), gen_C:Z4_1(b)) → gen_C:Z4_1(+(n6_1, b)), rt ∈ Ω(1 + n61)

Generator Equations:
gen_C:Z4_1(0) ⇔ Z
gen_C:Z4_1(+(x, 1)) ⇔ C(S, gen_C:Z4_1(x))

The following defined symbols remain to be analysed:
mul0

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
mul0(gen_C:Z4_1(n534_1), gen_C:Z4_1(b)) → gen_C:Z4_1(*(n534_1, b)), rt ∈ Ω(1 + b·n53412 + n5341)

Induction Base:
mul0(gen_C:Z4_1(0), gen_C:Z4_1(b)) →RΩ(1)
Z

Induction Step:
mul0(gen_C:Z4_1(+(n534_1, 1)), gen_C:Z4_1(b)) →RΩ(1)
add0(mul0(gen_C:Z4_1(n534_1), gen_C:Z4_1(b)), gen_C:Z4_1(b)) →IH
add0(gen_C:Z4_1(*(c535_1, b)), gen_C:Z4_1(b)) →LΩ(1 + b·n5341)
gen_C:Z4_1(+(*(n534_1, b), b))

We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
mul0(C(x, y), y') → add0(mul0(y, y'), y')
mul0(Z, y) → Z
add0(C(x, y), y') → add0(y, C(S, y'))
add0(Z, y) → y
second(C(x, y)) → y
isZero(C(x, y)) → False
isZero(Z) → True
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: C:Z → C:Z → C:Z
C :: S → C:Z → C:Z
add0 :: C:Z → C:Z → C:Z
Z :: C:Z
S :: S
second :: C:Z → C:Z
isZero :: C:Z → False:True
False :: False:True
True :: False:True
goal :: C:Z → C:Z → C:Z
hole_C:Z1_1 :: C:Z
hole_S2_1 :: S
hole_False:True3_1 :: False:True
gen_C:Z4_1 :: Nat → C:Z

Lemmas:
add0(gen_C:Z4_1(n6_1), gen_C:Z4_1(b)) → gen_C:Z4_1(+(n6_1, b)), rt ∈ Ω(1 + n61)
mul0(gen_C:Z4_1(n534_1), gen_C:Z4_1(b)) → gen_C:Z4_1(*(n534_1, b)), rt ∈ Ω(1 + b·n53412 + n5341)

Generator Equations:
gen_C:Z4_1(0) ⇔ Z
gen_C:Z4_1(+(x, 1)) ⇔ C(S, gen_C:Z4_1(x))

No more defined symbols left to analyse.

(13) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
mul0(gen_C:Z4_1(n534_1), gen_C:Z4_1(b)) → gen_C:Z4_1(*(n534_1, b)), rt ∈ Ω(1 + b·n53412 + n5341)

(14) BOUNDS(n^3, INF)

(15) Obligation:

Innermost TRS:
Rules:
mul0(C(x, y), y') → add0(mul0(y, y'), y')
mul0(Z, y) → Z
add0(C(x, y), y') → add0(y, C(S, y'))
add0(Z, y) → y
second(C(x, y)) → y
isZero(C(x, y)) → False
isZero(Z) → True
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: C:Z → C:Z → C:Z
C :: S → C:Z → C:Z
add0 :: C:Z → C:Z → C:Z
Z :: C:Z
S :: S
second :: C:Z → C:Z
isZero :: C:Z → False:True
False :: False:True
True :: False:True
goal :: C:Z → C:Z → C:Z
hole_C:Z1_1 :: C:Z
hole_S2_1 :: S
hole_False:True3_1 :: False:True
gen_C:Z4_1 :: Nat → C:Z

Lemmas:
add0(gen_C:Z4_1(n6_1), gen_C:Z4_1(b)) → gen_C:Z4_1(+(n6_1, b)), rt ∈ Ω(1 + n61)
mul0(gen_C:Z4_1(n534_1), gen_C:Z4_1(b)) → gen_C:Z4_1(*(n534_1, b)), rt ∈ Ω(1 + b·n53412 + n5341)

Generator Equations:
gen_C:Z4_1(0) ⇔ Z
gen_C:Z4_1(+(x, 1)) ⇔ C(S, gen_C:Z4_1(x))

No more defined symbols left to analyse.

(16) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
mul0(gen_C:Z4_1(n534_1), gen_C:Z4_1(b)) → gen_C:Z4_1(*(n534_1, b)), rt ∈ Ω(1 + b·n53412 + n5341)

(17) BOUNDS(n^3, INF)

(18) Obligation:

Innermost TRS:
Rules:
mul0(C(x, y), y') → add0(mul0(y, y'), y')
mul0(Z, y) → Z
add0(C(x, y), y') → add0(y, C(S, y'))
add0(Z, y) → y
second(C(x, y)) → y
isZero(C(x, y)) → False
isZero(Z) → True
goal(xs, ys) → mul0(xs, ys)

Types:
mul0 :: C:Z → C:Z → C:Z
C :: S → C:Z → C:Z
add0 :: C:Z → C:Z → C:Z
Z :: C:Z
S :: S
second :: C:Z → C:Z
isZero :: C:Z → False:True
False :: False:True
True :: False:True
goal :: C:Z → C:Z → C:Z
hole_C:Z1_1 :: C:Z
hole_S2_1 :: S
hole_False:True3_1 :: False:True
gen_C:Z4_1 :: Nat → C:Z

Lemmas:
add0(gen_C:Z4_1(n6_1), gen_C:Z4_1(b)) → gen_C:Z4_1(+(n6_1, b)), rt ∈ Ω(1 + n61)

Generator Equations:
gen_C:Z4_1(0) ⇔ Z
gen_C:Z4_1(+(x, 1)) ⇔ C(S, gen_C:Z4_1(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
add0(gen_C:Z4_1(n6_1), gen_C:Z4_1(b)) → gen_C:Z4_1(+(n6_1, b)), rt ∈ Ω(1 + n61)

(20) BOUNDS(n^1, INF)